


## **Teddy bear**



We have thought of 13 circles. 11 of them are drawn accurately on the above graph. Here are the equations of 11 of the original 13 circles.

1. 
$$(x+10)^2 + (y+15)^2 = 4\pi^2$$

2. 
$$x^2 + v^2 = 324$$

3. 
$$(x + 22)^2 + (y + 36)^2 = 411$$

4. 
$$(x + 3\pi)^2 + (y - 15)^2 = 1990$$

4. 
$$(x + 3\pi)^2 + (y - 15)^2 = 1990$$
  
5.  $(x - 21\sqrt{2})^2 + (y - 24\sqrt{3})^2 = 131\sqrt{5}$ 

6. 
$$x^2 + y^2 + 66x - 78y + 2110 = 0$$

7. 
$$x^2 + y^2 = 9$$

8. 
$$(x-23)^2 + (y+42)^2 = 200$$

9. 
$$x^2 + y^2 = 81$$

10. 
$$(x-18)^2 + (y+36)^2 = 1990$$

11. 
$$x^2 + y^2 - 18x + 45 = 0$$

Can you match them up, find the two missing equations and draw the two missing circles on the graph?